Browsing Tag

chemistry

Ionic_bond
Chemistry Science

What is Ionic Bonding?

Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, and is the primary interaction occurring in ionic compounds. It is one of the main bonds along with Covalent bond and Metallic bonding. Ions are atoms that have gained one or more electrons (known as anions, which are negatively charged) and atoms that have lost one or more electrons (known as cations, which are positively charged). This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be of a more complex nature, e.g. molecular ions like NH+
4 or SO2−
4. In simpler words, an ionic bond is the transfer of electrons from a metal to a non-metal in order to obtain a full valence shell for both atoms.

Over View of Ionic Bond

Atoms that have an almost full or almost empty valence shell tend to be very reactive. Atoms that are strongly electronegative (as is the case with halogens) often have only one or two empty orbitals in their valence shell, and frequently bond with other molecules or gain electrons to form anions. Atoms that are weakly electronegative (such as alkali metals) have relatively few valence electrons, which can easily be shared with atoms that are strongly electronegative. As a result, weakly electronegative atoms tend to distort their electron cloud and form cations.

Formation of Ionic Bond

Ionic bonding can result from a redox reaction when atoms of an element (usually metal), whose ionization energy is low, give some of their electrons to achieve a stable electron configuration. In doing so, cations are formed. An atom of another element (usually nonmetal) with greater electron affinity accepts the electron(s) to attain a stable electron configuration, and after accepting electron(s) an atom becomes an anion. Typically, the stable electron configuration is one of the noble gases for elements in the s-block and the p-block, and particular stable electron configurations for d-block and f-block elements. The electrostatic attraction between the anions and cations leads to the formation of a solid with a crystallographic lattice in which the ions are stacked in an alternating fashion. In such a lattice, it is usually not possible to distinguish discrete molecular units, so that the compounds formed are not molecular in nature. However, the ions themselves can be complex and form molecular ions like the acetate anion or the ammonium cation.

For example, common table salt is sodium chloride. When sodium (Na) and chlorine (Cl) are combined, the sodium atoms each lose an electron, forming cations (Na+), and the chlorine atoms each gain an electron to form anions (Cl−). These ions are then attracted to each other in a 1:1 ratio to form sodium chloride (NaCl).

Na + Cl → Na+ + Cl− → NaCl
However, to maintain charge neutrality, strict ratios between anions and cations are observed so that ionic compounds, in general, obey the rules of stoichiometry despite not being molecular compounds. For compounds that are transitional to the alloys and possess mixed ionic and metallic bonding, this may not be the case anymore. Many sulfides, e.g., do form non-stoichiometric compounds.

Many ionic compounds are referred to as salts as they can also be formed by the neutralization reaction of an Arrhenius base like NaOH with an Arrhenius acid like HCl

NaOH + HCl → NaCl + H2O
The salt NaCl is then said to consist of the acid rest Cl− and the base rest Na+.
The removal of electrons from the cation is endothermic, raising the system’s overall energy. There may also be energy changes associated with breaking of existing bonds or the addition of more than one electron to form anions. However, the action of the anion’s accepting the cation’s valence electrons and the subsequent attraction of the ions to each other releases (lattice) energy and, thus, lowers the overall energy of the system.

Ionic bonding will occur only if the overall energy change for the reaction is favorable. In general, the reaction is exothermic, but, e.g., the formation of mercuric oxide (HgO) is endothermic. The charge of the resulting ions is a major factor in the strength of ionic bonding, e.g. a salt C+A− is held together by electrostatic forces roughly four times weaker than C2+A2− according to Coulombs law, where C and A represent a generic cation and anion respectively. The sizes of the ions and the particular packing of the lattice are ignored in this rather simplistic argument.

Structures of Ionic Bond

ionic_bond

Representation of ionic bonding between lithium and fluorine to form lithium fluoride. Lithium has a low ionization energy and readily gives up its lone valence electron to a fluorine atom, which has a positive electron affinity and accepts the electron that was donated by the lithium atom. The end-result is that lithium is isoelectronic with helium and fluorine is isoelectronic with neon. Electrostatic interaction occurs between the two resulting ions, but typically aggregation is not limited to two of them. Instead, aggregation into a whole lattice held together by ionic bonding is the result.

Ionic compounds in the solid state form lattice structures. The two principal factors in determining the form of the lattice are the relative charges of the ions and their relative sizes. Some structures are adopted by a number of compounds; for example, the structure of the rock salt sodium chloride is also adopted by many alkali halides, and binary oxides such as magnesium oxide. Pauling’s rules provide guidelines for predicting and rationalizing the crystal structures of ionic crystals.

Strength of Ionic Bond

For a solid crystalline ionic compound the enthalpy change in forming the solid from gaseous ions is termed the lattice energy. The experimental value for the lattice energy can be determined using the Born–Haber cycle. It can also be calculated (predicted) using the Born–Landé equation as the sum of the electrostatic potential energy, calculated by summing interactions between cations and anions, and a short-range repulsive potential energy term. The electrostatic potential can be expressed in terms of the interionic separation and a constant (Madelung constant) that takes account of the geometry of the crystal. The further away from the nucleus the weaker the shield. The Born-Landé equation gives a reasonable fit to the lattice energy of, e.g., sodium chloride, where the calculated (predicted) value is −756 kJ/mol, which compares to −787 kJ/mol using the Born–Haber cycle.[2][3] In aqueous solution the binding strength can be desribed by the Bjerrum or Fuoss equation as function of the ion charges, rather independent of the nature of the ions such as polaribility or size [4] The strenght of salt bridges is most often evaluated by measurements of equilibria between molecules containing cationic and anionioc sites, most often in solution. [5] Equilibrium constants in water indicate additive free energy contributions for each salt bridge. Another method for the identification of hydrogen bonds also in complicated molecules is crystallography, sometimes also NMR-spectroscopy.